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PREFACE

“If you want to understand function, study structure! ~

Francis H. Crick

lonic Liquids (ILs) are a subset of molten salts distinguished by melting points below 373 K.
ILs are unusual among solvents in that they are composed entirely of ions, with no neutral
species present. Over the last decade or so, ILs have emerged as an attractive class of solvents
for a range of chemical applications, mostly due to their ‘green’ characteristics and
remarkable liquid properties. Understanding the ion arrangements in ILs is important as many
of these applications and properties are related to their (bulk or interfacial) solvent structure.
Historically, ILs were considered structurally homogeneous solutions of freely dissociated
ions or ion pairs. Whilst these concepts are adequate for molten salt melts, IL ions can
participate in a range of attractive interactions (van der Waals, n-n, hydrogen bonding, or
solvophobic) in addition to Coulombic forces. Notably too, ion-ion interactions in ILs are
tuneable, because changes in anion/cation size, shape or functional groups alter the balance of
inter-ionic forces. These features suggest different solvent structures may be present in ILs
compared to molecular solvents or molten salts. Further, many IL ions (usually the cation) are
amphiphilic with both charged and uncharged groups. This means that there is potential for
self-assembly in a fashion similar to aqueous surfactant dispersions, microemulsions or liquid
crystals, but on much smaller length scales. Recent experimental and theoretical research has
tested this hypothesis for aprotic ILs. The results show that aprotic ILs are heterogeneous on
the nanoscale, forming polar and apolar domains in the bulk liquid due to clustering of
charged and uncharged molecular groups.

In this Thesis, the nature of protic IL structure in the bulk phase is examined using model fits
to neutron diffraction data. It is shown that protic ILs are nanostructured solvents and that the
solvent structure can be controllably varied. Secondly, aprotic IL structure at the Au(111)
electrode interface are elucidated using atomic force microscopy. This provides fundamental
insight to the IL electrical double layer structure that will underpin future IL-based

electrochemical technologies.
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THESIS OUTLINE

Chapter 1 reviews the relevant chemical literature. Sections 1 and 2 introduces ionic liquids
(ILs) as both salts and solvents. Section 3 focusses on the bulk phase structure of ILs, after
first surveying liquid structures of molecular solvents, self-assembled phases and molten salts
for perspective. The morphology of the solid-IL interface is examined in Section 4, again
with comparisons to similar interfaces. Section 5 links publications resulting from this Thesis
to knowledge gaps in the literature.

Chapter 2 details the materials and methods used in this Thesis. Neutron diffraction, atomic
force microscopy and empirical potential structure refinement are described. The fine details
of experiment procedures can be found in the methods section of each publication.

The first of papers presented in Chapters 3-7 probe protic IL nanostructure in the bulk phase.
Model fits to neutron diffraction data show that neat ILs form bicontinuous Ls-sponge-like
morphologies, with domains as small as 1 nm. The effect of electrostatic, H-bonding,
solvophobic interactions and water dissolution is elucidated. A link to classical models for
amphiphile self assembly is also drawn as the relative volumes of the polar and apolar
moieties defines the packing geometry of the ions.

In Chapters 8 and 9, atomic force microscopy (AFM) is used to probe the structure of the IL-
Au(111) electrical double layer via in situ electrochemical force measurements. The IL
double layer is complex, and not consistent with the Stern-Gouy-Chapman model for aqueous
electrolytes. AFM force versus separation profiles suggest a layered morphology forms at the
interface, with a potential decay that oscillates between alternating planes of ion layers.

The key findings of this Thesis are discussed in broader context in Chapter 10, with future

avenues of research suggested.
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